3.2 Rolle's Theorem and the Mean Value Theorem (MVT)

Obj: Define and Apply the MVT and Rolle's theorem

If f(x) is ______ along the closed interval [a, b] and ______ along the open interval (a,b) there exists at least one point c in (a,b) such that

Ex 1. Apply the MVT to $f(x)=x^3-2x$ on the interval [0,3]. Find all values within the interval.

Now Try:
$$f(x) = \frac{x+1}{x}$$
, $[\frac{1}{2}, 2]$ Can you use the interval [-1,1]?

Why wouldn't the MVT apply to $f(x) = |x^2 - 4x|, [-1, 2]$

Ex 2. Suppose a driver enters a tollway at mile marker 110, picking up a card at the toll plaza, and exits the tollway via the toll plaza at mile marker 215 just 1 hour and 16 minutes later. The toll booth attendant collects the \$4.50 toll and issues a speeding ticket. How does the MVT tell us that the driver was speeding?

<u>Rolle's theorem:</u> Let f(x) be ______ on the closed interval [a,b] and ______ on the open interval (a,b). If f(a)=f(b), then there is <u>at least</u> one number c such that:

3 criteria for Rolle's:

In Rolle's theorem (the MVT), the average slope is 0, so we can conclude a Horizontal tangent!

Given $f(x)=x^4-2x^2$. Find all the values of c in the interval (-2,2) such that f'(c)=0.

Sample AP Problems.

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.

(d) Find the average rate of change of v over the interval $8 \le t \le 20$. Does the Mean Value Theorem guarantee a value of c, for 8 < c < 20, such that v'(c) is equal to this average rate of change? Why or why not?